
Comparative Transcriptome Profiling in Winter Wheat Grown under
Different Agricultural Practices
Gabriela N. Tenea, Fernando Cordeiro Raposo, and Alain Maquet*

European Commission, DG Joint Research Centre (JRC), Institute for Reference Materials and Measurements (IRMM), Retieseweg
111, 2440 Geel, Belgium

*S Supporting Information

ABSTRACT: Wheat (Triticum aestivum L.), one of the three most important cereal crops worldwide, has a dominant position in
Europe due to its adaptability and consumer acceptance particularly as an organic food commodity. Organic agriculture is
developing rapidly, and its authenticity is presently a subject of great concern to food authorities, as incorrect labeling can
represent commercial fraud. A comparative transcriptome profiling was conducted on winter wheat flag leaves of several cultivars
growing in open fields under different agricultural production systems. Performing a microarray study, 10 transcripts differentially
expressed in organic and conventional growing conditions were identified in Tommi and Centenaire cultivars. Transcript
abundance profiles of selected probe sets were independently confirmed by quantitative reverse-transcription PCR analysis,
tested on Tommi, Centenaire, and Cubus cultivars from different growing-year and geographical sites. Univariate and
multivariate statistical analysis showed that the global wheat transcriptome is influenced by the agricultural system indicating a
promising approach for analytical verification of the production system of wheat at the farm level.

KEYWORDS: transcriptome profiling, gene expression, winter wheat flag leaves, Triticum aestivum, organic agriculture,
multivariate statistics

■ INTRODUCTION

In the past decade, the new techniques of functional genomics
such as microarray technology has been applied to plant species
to analyze the responses to several stress conditions1,2 or
various treatments,3,4 and only recently proposed as a new
approach for identification of changes in transcript accumu-
lation as an effect of agricultural practice.5,6 The wheat
(Triticum aestivum L.) transcriptomics approach has been
used with a high potential to reveal the expression dynamics of
genes that control many important traits for agriculture.7−9 The
broad range of gene expression data sets provides future
opportunities for integrating these data in a systematic
approach that may reveal gene coexpression networks that
underline important traits and represents valuable resources,
which can be exploited in the developmental context and
environmental conditions such as drought, high-salinity, or
cold.10

Organic agriculture is developing rapidly over the world, and
food authenticity is presently a subject of great concern to food
authorities, as the incorrect labeling of foodstuffs can represent
commercial fraud.11 Organic agricultural methods are believed
to be more environmentally friendly than conventional
agriculture, which depends on the routine use of herbicides,
pesticides, and inorganic nutrient applications in the production
of crops and animals. It has also been suggested that organic
practices can enhance the biodiversity in agricultural land-
scapes.12 Most used fertilizers in agricultural practices are
nitrogen based. Nitrate is a natural constituent in plants and is
present in all vegetables. Several factors influence the
accumulation of nitrate in plants including lack of sunlight or
water, variety, maturity, and high levels of fertilization.13 For
example, numerous studies comparing the nitrate contents of

organically and nonorganically grown fruits and vegetables
revealed a trend toward significantly lower nitrate contents in
organically grown crops; however, another study found
inconsistent or not significant differences.14 This is likely to
be due to the use of lower amounts and less available sources of
nitrogen in an organic farming system (e.g., composts). The
nitrogen of the organic fertilizers is not soluble and has to be
mineralized before its assimilation by the plants, while the
nitrogen from mineral fertilizers is directly assimilated. Other
studies have shown that in the case of cereal an increase of the
nitrogen rate could imply an increase of proteins but a decrease
in their baking quality.15 However, nitrate fertilization leads
among other things to higher levels of amino acids and protein
and rapid changes in the levels of a wide range of transcripts
encoding enzymes in nitrogen and carbon metabolism to
facilitate the assimilation of nitrate and its incorporation into
amino acids.16,17

Transcription is a biological process known to be influenced
not only by abiotic stress conditions but also biotic ones18 and
thus is expected to be also modulated by the differences in the
amount and type of plant protection products applied during
the developmental stages of the plant.
Agricultural research related to organic farming has been

mainly focused on nutritional benefits and food safety aspects
(e.g., pesticides, antibiotics, mycotoxins, and nitrites) of organic
husbandry in order to appreciate the specificity and eventually
superiority of organic food.
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Recently, a number of papers reported the use of modern
molecular techniques for the identification of diagnostic factors
such as transcripts, proteins, and metabolites for food
authentication.5,19,20 For example, transcriptome analysis was
performed in two cultivars of potato tubers grown in two
controlled agricultural systems including differences in fertilizer
(manure or compost).6 The most significant differences were
observed between compared cultivars (genetic background)
instead of between growing conditions.6 In wheat, Lu et al.21

analyzed the gene expression changes using either organic
(farmyard manure) or inorganic nitrogen. Several genes were
differentially expressed in grain endosperm when nitrogen was
supplied in either organic or inorganic form. Nonetheless, this
unique study on wheat was carried out mainly on one variety
grown under controlled experimental conditions.
Four main approaches (i.e., retail purchase comparison,

fertilizer treatment comparisons, whole farm comparison, or
animal feeding and human health) are used when comparing
the two agricultural systems with their advantages and
disadvantages and complement each other in terms of the
statement they can make.22 Farm studies are conducted on
products from selected farms with different forms of cultivation
for which the production conditions are recorded.23 A mean
number of samples reflecting as much as possible the reality can
be examined. Environmental factors such as climate and soil
conditions can be made suitable for comparison by selecting
neighboring farms. The disadvantage of this method is that
accuracy of the information given cannot be easily verified.
Another problem is that it is very difficult to select the farms
and fields in such a manner that they truly represent the
cultivation forms which are to be compared regarding the fact
that various organic and conventional production systems exist.
Considering the intrinsic objective of this study which is to
evaluate potential analytical methods that could be used by
inspectors to support their work within the certification system
of the organic agriculture, the whole farm comparison is the
most appropriate experimental design to provide samples that
best represent the ones used by the inspectors for taking their
decision.
Despite intensive research on the genetic improvement of

wheat, the knowledge on how agricultural growing conditions
affect the transcription is still weak and under investigation. In
addition, up to now there is no validated analytical method for
the authentication of organic food products.24 Availability of
wheat microarray platforms may enable the identification of
gene expression profiles associated with particular growing
conditions and allow the development of diagnostic markers to
verify the type of growing conditions. For addressing this issue,
the Affymetrix GeneChip wheat genome array was applied to
the flag leaves of two winter wheat cultivars grown under three
different agricultural production systems in order to screen for
differentially expressed transcripts. The flag leaves were chosen
based on its importance in nitrogen accumulation leading to the
increase of grain yield and on the fact that synthetic liquid
fertilizer can still be applied and leading further to changes in
the transcriptome. We report here a comprehensive analysis of
transcriptome profiles in winter wheat flag leaves, and the
results represent a promising approach for the evaluation of the
origin of a production system in relation to food authentication.

■ MATERIALS AND METHODS
Plant Material and Study Design. For any of the winter wheat

(Triticum aestivum L., Poaceae) samples collected, one flag leaf (the last

leaf before the ear) per plant was sampled at the milk stage of kernel
development. The flag leaves harvested from the fields were further
sliced longitudinally, submersed in RNAlater buffer (Ambion, Gent,
Belgium), and stored on ice upon arrival in the lab. The tissue was
ground to powder in liquid nitrogen with a MM301 mixer mill
(Retsch, Aartselaar, Belgium) and the powder stored at −80 °C until
processing. A geographical localization of all the fields sampled in this
study is provided in Figure S1 (Supporting Information).

For the microarray analysis, two winter wheat cultivars (i.e., Tommi
and Centenaire) were collected in 2008 from the surroundings of
Ciney in the Walloon region (Belgium) on plants grown under three
agricultural systems: no nitrogen fertilization, certified organic
agriculture, and conventional agriculture. In this environment, the
organic fields and the ones under no nitrogen fertilization of both
wheat cultivars were placed side by side. A total set of 30 samples was
used (i.e., 5 flag leaves per field × 3 fields per cultivar × 2 cultivars).

For the quantitative reverse-transcription PCR (RT-qPCR)
confirmatory analysis, a total of 60 samples of winter wheat cultivar
Cubus (i.e., 4 fields × 15 samples per field) were collected in 2006
from Marche (2 fields), Fronville (1 field), and Dinant (1 field).

Fertilization applied by the farmers during the full study was
recorded (Table S1, Supporting Information). In order to check the
homogeneity of the soils in a specific geographical site, samples were
collected from the four fields of cv. Cubus grown in 2006 (Table S2,
Supporting Information). The fields were characterized by a loamy soil
(particle size <50 μm) percentage higher than 45% and a clay (particle
size <2 μm) percentage lower than 30%. The combination of fertility
and moisture holding capacity with good drainage makes loamy soil
systems an excellent medium for growing wheat. The pH (KCl) which
is a fundamental property controlling biological and chemical
processes in the soil was generally within the target zone for such
soil types (target zone: pH 6.2−7.3).25 Cation exchange capacity
(CEC) is an important property of soil and is directly related to soil
texture. Soil particles are negatively charged, which allows the soil to
prevent cations from being leached away. A CEC greater than 10 cmol
kg−1 was observed across all sites indicating good base cation holding
capabilities. For the fields located in the zone of Ciney, the soils were
also loamy ones according to the digital soil map of the Walloon
Region (http://cartopro3.wallonie.be/CIGALE/).

RNA Extraction and Microarray Analysis. Total RNA was
isolated from wheat flag leaves (100 mg powder) using the Qiagen
RNA isolation kit (Qiagen, Carlsberg, CA, USA) following the
manufacturer’s instructions. The RNA quality was assessed with the
2100 Bioanalyzer (RNA Nano chip 6000, Agilent Technologies,
Diegem, Belgium) and their quantity estimated with the NanoDrop
ND3300 fluorospectrophotometer (Thermo Scientific, Wilmington,
DE, USA). The samples with a RNA integrity number (RIN) higher
than 5.5 were selected for further experiments. The selected samples
(n = 30) used for microarray analysis fitted the requirements for gene
expressions screening (i.e., the ribosomal peaks were present and not
degraded). The genome-wide expression profile was performed using
the GeneChip Wheat Genome Array (http://www.affymetrix.com/
products/arrays/specific/wheat.affx), and the expression profiling
experiments were conducted on the Affymetrix GeneChip microarray
platform (Affymetrix Inc., Santa Clara, CA, USA). All RNA samples
were processed following the Affymetrix GeneChip Expression
Analysis Technical Manual.

Microarray Data Preprocessing. GeneChip hybridization quality
was ensured using the standard Affymetrix controls. Four data
processing methods have been used: (a) Probe Log2 Intensity Error
(PLIER) (www.affymetrix.com); options were chosen such that only
perfect match (PM) intensities were taken into account and quantile
normalization was applied to the probes. The analysis was performed
within Bioconductor (http://www.bioconductor.org/); (b) dChip as
described by Li and Wong,26 performed with the dChip software
(http://biosun1.harvard.edu/complab/dchip/); (c) Robust Multiarray
Average (RMA) as described in Irizarry et al.27 This method makes use
only of the PM intensities, consists of a background correction, and
applies a quantile normalization and median polish to summarize the
intensities in an expression value, performed within the bioconductor;
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(d) positional-dependent-nearest neighbor model (PDNN) as
described by Zhang et al.28 The binding energy parameter file and
the expression values were computed with the Perfect Match software
(http://bioinformatics.mdanderson.org/software.html).
The normalized expression values (of each of the four data

processing methods) of the different conditions were compared with
the Linear Models for Microarray Data, Limma Package of
Bioconductor.29,30 For each probe set, the number of MAS 5.0
(Affymetrix Microarray Suite 5) detection calls that were present was
counted over all the hybridizations and ranged between 0 (none are
present) and 30 (all are present). The probes that were absent for all
samples (i.e., # present calls = 0) were omitted. This subset consists of
20,157 probe sets. Also, the control probes were omitted for analysis;
hence, the analysis was performed for 41,048 probes. The average
expression value for all conditions was estimated using the Limma
package, and finally, a contrast matrix (contrast of estimates) was
estimated. For each of the contrasts, a moderated t-statistic
implemented in Limma was used to test whether it deviated
significantly from zero. The resulting p-values were corrected for
multiple testing with Benjamini-Hochberg31 to control for the false
discovery rate. For the selection of differentially expressed genes, a
method with a more stringent cutoff of the uncorrected p-values (e.g.,
p < 0.001) was applied. Probe sets were allocated to tissue and
biological process categories according to the sequence similarity of
the Affymetrix target known sequences (Table S3, Supporting
Information). Gene annotation was derived from the Affymetrix
Web site, National Center for Biotechnology (NCBI), TIGR Wheat
genome, and PLEXdb (http://www.plexdb.org). The microarray data
were submitted to ArrayExpress (Accession # E-MTAB-903).
Quantitative TaqMan Real-Time PCR Analysis. The quantita-

tive reverse-transcription PCR (RT-qPCR) analysis was performed for
selected transcripts identified as differentially expressed in microarray
analysis (Tables S3 and S4, Supporting Information). Total RNA
isolated from flag leaves was treated with DNaseI (Turbo DNaseI,
Ambion) to remove contaminating DNA before being used as a
template for complementary DNA (cDNA) synthesis. First strand
cDNA was synthesized using the high-capacity cDNA reverse
transcription kit (M-MLV reverse transcriptase) according to the
manufacturer’s instruction (Applied Biosystems, Life Technologies
Corp., Carlsbad, CA). Applied Biosystems (assay-by-design service)
was used for designing primers and minor-groove-binding non-
fluorescent sequence (MGB-NFQ) TaqMan probes (Table S5,
Supporting Information). The total PCR reaction volume was 20
μL, comprising 10 μL of TaqMan buffer (2×), 1 μL of 20× TaqMan
assay, and 9 μL of cDNA (1:20 dilution) using an ABI standard
protocol. The reactions were carried out in duplicates in a 384 well
plate. The Cq value (threshold method) was determined automatically
using the SDS 2.2.2 software (Applied Biosystems). The PCR
amplification efficiency ranged from 93% to 107% (Table S5,
Supporting Information) and was determined by the slope of a
standard curve obtained by plotting the fluorescence versus
concentrations of a mixture of all sample cDNAs (ranging from 1:1
to 1:10000 dilution of the cDNA mixture sample) tested for each
primer combination and was determined using the equation: E =
10(−1/slope) − 1.32 No signal was detected in no-template and no-RT
(no reverse-transcription) controls. Cq values extracted from the qPCR
instrument, and the relative quantities were determined according to
Biogazelle qBasePLUS software33 considering the PCR efficiency
calculated for each primer/probe combination. The normalization of
RT-qPCR reaction was performed using Ferredoxin-NADP (H)
oxidoreductase (AJ457980) and Actin II (TC234027) selected as the
most stable expressed genes in the winter wheat flag leaves grown
under three different agricultural production systems.34

Statistical Analyses. Systat 13 (Erkrath, Germany) was used in
order to perform descriptive statistics and the principal component
analysis (PCA) for wheat cv. Tommi and Centenaire gene expression
analyzed by microarray. For the PCA, the normalized relative
quantities of the 10 selected candidate genes measured by RT-qPCR
were considered.35

SIMCA P+ v12.0 (Umetrics, Umea,̊ Sweden) was used to build a
predictive model based on the orthogonal projections to latent
structures − discriminant analyses (OPLS-DA) method considering
the three wheat cultivars and the log transformed normalized relative
quantities of the selected 10 candidate genes measured by RT-qPCR.
From the total of 113 samples analyzed (51 conventional, 48 organic,
and 14 no nitrogen fertilization), a calibration set and a validation set
were selected randomly for the development and validation of the
model, respectively. Seven randomly selected segments were used for
the cross-validation. In addition, a prediction set (20% of the total
analyzed samples) was selected for the estimation of the prediction
rates. The development, validation, and prediction were performed on
five random samplings from the sample set. For each OPLS-DA
model, some performance characteristics were evaluated: (i) the total
explained variance due to the agricultural system (Rycum

2 ); (ii) the total
amount predicted (Qcum

2 ); (iii) the root mean square error of
estimation (RMSEE); and (iv) the root mean square error of
prediction (RMSEP). Each OPLS-DA model was applied on
“unknown” samples (i.e., prediction set) and the prediction rates
(%) for the three classes estimated.

Outliers (0.5% of the total data set) were removed before the PCA
and PLS modeling.

■ RESULTS

Global Transcriptome Changes in Winter Wheat Flag
Leaves Revealed by Microarray. Comparative transcrip-
tome profiling was carried out on flag leaves collected from two
winter wheat cultivars, Tommi and Centenaire, grown under
organic and conventional agricultural production systems in
similar pedoclimatic conditions in order to identify subsets of
genes differentially expressed as a response to crop husbandries.
Depending on the stringency of the data extraction method
used (PLIER, PDNN, RMA, and dChip), different numbers of
differentially expressed probe sets were obtained by applying a
cutoff on the uncorrected p-values at p < 0.001 and a fold-
change of two (Table 1). In addition, we performed
comparisons of organic or conventional versus samples grown

Table 1. Comparisons of Differentially Expressed Probe Sets
Depending on the Applied Data Extraction Methods and
Treatments to Two Winter Wheat Cultivars (Tommi vs
Centenaire)

uncorrected p-values <0.001

data
extractiona treatmentb

log2-ratio < −1
(down-

regulated)

log2-ratio >1
(up-

regulated)

total
regulated
probe sets

PLIER O vs C-
Tommi

238 120 358

O vs C-
Centenaire

884 523 1407

dChip O vsC-
Tommi

162 76 238

O vsC-
Centenaire

686 276 962

RMA O vs C-
Tommi

200 88 288

O vs C-
Centenaire

722 333 1055

PDNN O vs C-
Tommi

38 12 50

O vs C-
Centenaire

196 50 246

aPLIER, probe log 2 intensity error; RMA, robust multiarray average;
PDNN, positional-dependent-nearest neighbor model. bWheat culti-
vars grown under an organic production system (O) and under a
conventional production system (C).
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in no-nitrogen supply in both winter wheat cultivars (Table S6,
Supporting Information). Notably, not many transcripts
considering the 41048 probes sets analyzed were found as
differentially expressed when organic vs no-nitrogen samples
were compared, while many transcripts were different when
conventional were compared with no-nitrogen grown samples.
Table 1 shows clearly (i) that independent of the data
extraction method, the number of regulated probe sets was
significantly higher in cultivar Centenaire than in the cultivar
Tommi and (ii) the stringency of the selected data extraction
methods in the identification of differentially expressed genes
with PLIER being the least and PDNN the most stringent
method. Since a higher amount of false positive results can be
expected when using the PLIER method, this method was
discarded. Using the PDNN method to select differentially
expressed transcripts in both wheat cultivars and the two
agricultural conditions (organic/conventional), and using a
cutoff higher than 2-fold-change, five probe sets were found as
down-regulated in both organically grown cultivars, while no
probe sets were up-regulated in both organically grown
cultivars. On the basis of RMA and dChip methods with an
intermediate stringency, several probe sets were identified as
significantly down-regulated in the flag leaves of both
organically grown winter wheat cultivars, while one probe set
was up-regulated in both organically grown cultivars. To
compensate for lowered stringency, a cutoff value of 3-fold
change was used for the RMA and dChip methods. The choice
of threshold values is somehow arbitrary since every change in
gene expression can be biologically important, especially for
regulatory genes. However, in the first instance, by increasing
the stringency we expected to select the genes significantly
differentially expressed in both cultivars since we were
interested in selecting transcripts with altered expression
related to the agricultural production system and common to
all cultivars.
At the selected cutoff, 10 transcripts exhibited cultivar-

independent differences between organic and conventional
growing conditions (Tables S3 and S4, Supporting Informa-
tion). The most common functional group among the down-
regulated genes in organically grown Tommi and Centenaire
samples was represented by transcripts related to light regulated
protein precursors (LTP family). Only probe set
Ta.28063.1.S1_x_at had higher expression in both organic
cultivars samples than the conventional ones. PCA of the 10
selected probe sets produced a clear separation between
conventionally and organically or wheat grown without
nitrogen for the Tommi and Centenaire wheat cultivars (Figure
S2, Supporting Information). Taken together, these findings
suggest that microarray analysis is a promising approach, which
can be used to screen for differentially expressed transcripts in
wheat plants grown under different agricultural conditions.
Validation of Specific Gene Expression Profiles by

Quantitative Real-Time PCR Analysis. The relative
expression levels determined by RT-qPCR showed that
selected transcripts were in agreement with the microarray
data. Differences could be observed between organic and
conventional samples, and to some extent, a difference in
expression levels were also seen (data not shown), which may
be explained by the fact that the techniques used (microarray
and RT-qPCR) present different normalization procedures.
Figure 1 depicted the normalized relative expression of the
probe set Ta.30807.3.S1_x_at in conventional and organic
samples. This transcript had moderate similarity to an

Arabidopsis protein involved in the metabolism of the glutamate
group (Tables S3 and S7, Supporting Information).36 A blast
analysis against the rice genome showed a sequence similarity
to the light-induced protein 1-like, which is a light and circadian
regulated protein.37 There is evidence that the transcriptome is
strongly influenced by the circadian clock.38 Another study in
wheat grains have shown that this transcript which is involved
in aldehyde detoxification is differentially expressed in grains
grown under drought conditions.1 However, the environmental
input has an effect on the whole plant transcriptome, and the
response level is highly dependent on the time at which the
stress is applied.39 Only one probe set, Ta.28063.1.S1_x_at,
was identified as being up-regulated in organic Tommi and
Centenaire samples (Figure 2). This transcript had some

similarity with the gene DOT1, defectively organized tributaries
1 of Arabidopsis, which encodes a glycine-rich protein involved
in leaf vascular patterning (Table S3, Supporting Information).
The function of this gene is not known yet, and further studies
will be important for the identification of the biological function
of this gene. Despite the fact that a constant trend was observed
between both agricultural production systems, we noted in

Figure 1. Normalized relative quantities (X̅ ± SD) of the gene
Ta.30807.3.S1_at estimated in winter wheat flag leaves of three
cultivars grown under different agricultural production system. X-axis:
lanes 1−4, cv. Cubus; lanes 5−7, cv. Centenaire; lanes 8−10, cv.
Tommi; triangle, conventional agriculture; circle, organic agriculture;
×, no nitrogen applied.

Figure 2. Normalized relative quantities (X̅ ± SD) of the gene
Ta.28063.1.S1_x_at estimated in winter wheat flag leaves in three
cultivars grown under different agricultural production systems. X-axis:
lanes 1−4, cv. Cubus; lanes 5−7, cv. Centenaire; lanes 8−10, cv.
Tommi; triangle, conventional agriculture; circle, organic agriculture;
×, no nitrogen applied.
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some cases, such as for probe sets Ta.28394.3.S1_x_at and
TaAffx.131611.1.S1_at, a variation in fold change of gene
expression (data not shown). This variation may be attributed
to the wheat genotype or to environmental conditions that can
affect the expression of such transcripts in these plants.
Furthermore, we investigated the expression pattern of the

10 transcripts in cv. Cubus samples collected in 2006 from
three different geographical sites and two agricultural
conditions (organic vs. conventional) to see whether the
observed changes in gene expression is consistent and
independent of cultivar, growing year, and geography.
The relative expression of some of the selected probe sets

showed a slight modification of the transcriptome in the case of
cv. Cubus. Not all transcripts determined as being down-
regulated in organic wheat in cv. Tommi and Centenaire were
found to be down-regulated in cv. Cubus. The trend of a
decreasing gene expression in organic samples observed for the
probe set Ta.30807.3.S1_at (Figure 1) was also noted for
Ta.30807.2.S1_s_at and Ta.30807.1.S1_at (probe sets from the
same transcript). The range of expression levels differed
between the geographical sites but was still consistent in
terms of a lower expression in organic samples. In some cases,
the expression pattern was probably influenced by the
environments. For example, the probe sets Ta.8495.1.a1_at
and Ta.28233.1.S1_at showed a difference between organic and
conventional Cubus samples grown in Fronville and Dinant
(geographical distance = ±35 km), respectively, but not in the
case of Cubus samples collected in the surrounding of Marche
(distance between fields = 5 km). While in other cases,
genotypes influencing the expression pattern as in the case of
the probe set Ta.28063.1.S1_x_at did not show any significant
difference in gene expression between organically and conven-
tionally grown samples of cv. Cubus (Figure 2). These results
illustrate the importance in analyzing several cultivars that were
grown in different environments and crop seasons.
Prediction Model by OPLS-DA. PCA using the

normalized relative quantities of the 10 selected genes of
wheat samples showed a clear separation of samples collected in
organic growing fields (or fields without nitrogen fertilization)
and samples collected from conventional growing fields (Figure

3). The first principal component explained 33% of the total
variance due to the agricultural production systems, while the
second principal component explained 19%. Four principal
components were significant, which together explained 73% of
the total variance. In the case of cv. Cubus, the differentiation
between both agricultural production systems is weaker than
for cv. Tommi and Centenaire due to the fact that in the former
not all the selected genes (e.g., Ta.28063.S1_x_at) were
differentially expressed between the organically grown samples
and the conventionally grown ones (Figure 2). A higher
variation in gene expression could be also observed in
conventionally grown samples.
The orthogonal projections to latent structures−discriminant

analysis (OPLS-DA) was performed in order to sharpen the
separation between groups of observations (differences
between samples grown under organic/conventional/no nitro-
gen) by rotating PCA components such that a maximum
separation among classes is obtained, and by separating the
systematic variation in the predictor variables (i.e., normalized
relative quantities) into two parts, one that is linearly related to
the response variable and one that is unrelated (orthogonal) to
this variable. The advantage of OPLS-DA is its ability to
separate predictive from nonpredictive variation. All of the five
OPLS-DA models comprised two predictive components and
one orthogonal component. On average, the total explained
variance due to the agricultural system (Rycum

2 ) and the estimate
of the predictive ability of the model (Q2) are above 0.50
(Table 2). Therefore, the models developed are valid as far as
the biological material is used.40 Good models were obtained
showing a fair correlation between the quantified (observed)
gene expressions and the predicted gene expression. Indeed, on
average RMSEE equals RMSEP. The mean prediction rates
estimated from the five independent prediction sets equal 88%,
96%, and 43% for the conventional, organic, and no-nitrogen
wheat samples, respectively. The low prediction rate of wheat
samples grown without nitrogen fertilizer is explained by the
limited number of samples in this category (n = 14). Figure S3
(Supporting Information) shows the individual cumulative R2

and Q2 for every response variable (treatment) and illustrates

Figure 3. Principal component analysis of genes expressed in flag leaves of wheat grown under three agricultural production systems. Triangle,
conventional agriculture; ○, organic agriculture; ×, no nitrogen applied; Cu, cv. Cubus; Ce, cv. Centenaire; To, cv. Tommi.
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the low cumulative contribution of these samples to the
predictive model.
In total, 14% of the unknown samples used for prediction

were misclassified, and half of this percentage was in fact a
misclassification of wheat samples grown without nitrogen as
organically grown wheat. This similarity is in favor of field
experiments simulating organic agriculture by testing crops
under no nitrogen treatment. Considering the organic samples,
only 5% were false positives, and 1% was false negative. All
those samples were in fact from cv. Cubus, which was not
involved in the microarray study and consequently not
contributing to the importance of the preselected predictor
variables. As mentioned above, the profile of expression of
several genes in cv. Cubus is different from the one observed
for cv. Tommi and Centenaire. Estimating the variable
importance in projection for the five models highlighted, the
variables with the lowest correlation to all the responses were
Ta.28233.1, TaAffx.131611.1, and Ta.28394.3. Nonetheless,
removing them had no significant effect on the prediction rates
(data not shown).

■ DISCUSSION
Nitrogen availability under field conditions can vary from one
site to another one as a result of the fertilizers applied but also
due to environmental factors, and the inappropriate use of
fertilizers can lead to the changes in physiological state of the
plant triggered by internal or external factors under natural field
conditions and be further reflected in the changes of the global
transcriptome. A number of projects worldwide are therefore
focusing on understanding the processes that determine the
efficiency of nitrogen uptake, assimilation, and utilization of
nitrogen in order to improve the efficiency of nitrogen recovery
in the grain.42,43 While the physical processes of nitrogen and
sulfur remobilization have been studied in detail, the genetic
control of these processes and their contribution to agronomic
productivity are less well understood.41 The particular complex
structure of the flag leaf allows for an efficient translocation of
assimilates until the very late stages of leaf senescence,42 and
the relative contribution of the flag leaves to the final grain
nitrogen level is essential.43 Nitrogen fertilization during the
developmental growth of plants influences gene expres-
sion.21,44,45 A more recent gene expression study in maize46

identified several nitrogen biomarkers in response to different

sources of nitrogen fertilizer applied in different agronomic
practices. They have shown that while a single gene alone was
often able to assess nitrogen status in one experiment, the
composite score approach using multiple genes was able to
quantitatively assess nitrogen status across all experiments.
In relation to the agricultural systems for organic food

production, an inspector will need an analytical method that
can be applied on plant material samples grown in field
conditions and coming from various environments. As already
reported,47 a risk for plants grown in organically managed farms
is low nitrogen availability, which lends to negative effects on
yield and fruit quality. To avoid this problem, some
unscrupulous farmers could apply synthetic nitrogen by direct
fertilization of the crop (e.g., nitrogen fertilizer in solution
applied on the flag leaves), and in this case, the fraudulent
product is difficult to detect.
When comparing two agricultural systems (organic vs

conventional), farm studies are conducted on products from
selected farms with different forms of cultivation for which the
production conditions are recorded.23 Environmental factors
such as climate and soil can be made comparable by selecting
neighboring farms as was done in our study.
In the present study, we have selected those transcripts

whose expression differed between samples grown in organic
and conventional agricultural production systems, independ-
ently of the effect of cultivars (genetic background), crop
husbandry, and crop seasons. Similarly, the gene profiling
analysis done by the team of Lu et al.21 showed differences in
gene expression between wheat grains fertilized with organic
(farmyard manure) and inorganic nitrogen. Using a cutoff of
more than 2-fold change, we have identified 10 probe sets
which showed differences between organic and conventional
samples in winter wheat cultivars (i.e., Tommi and Centenaire).
These probes selected by microarray analysis in winter wheat
flag leaves belong putatively to defense metabolism, flavonol
metabolism, light regulated proteins, and storage proteins.
Moreover, we observed that the number of differentially
expressed transcripts is lower when organic versus no-nitrogen-
added-to-the-soil-growing samples were compared and were
higher in the case of the conventional one. Nonetheless,
considering the distance between conventional fields and
organic ones, an effect of the microenvironment could not be
completely excluded. The accuracy of microarray results was
confirmed by real-time quantitative PCR not only by repeating
the analyses on Tommi and Centenaire cultivars but also by
testing a third cultivar, i.e., Cubus. Among down-regulated
probe sets in organically grown samples or those grown under
no-nitrogen fertilization, the most significant differences have
been observed for probe sets Ta.30807 and Ta.23297.1. We
have shown that several genes had a similar range of expression
applying microarray or quantitative PCR to both Tommi and
Centenaire cultivars grown under three different conditions. In
silico analysis using publicly available data in Genevestigator
(https://www.genevestigator.com/gv/plant.jsp) revealed that
those transcripts are widely expressed although their expression
level varied at different stages of development in flag leaves and
other organs (Figure S4, Supporting Information). In general,
the heat-map expression pattern showed that those transcripts
are up-regulated by different stress and treatments conditions
such as nitrogen treatment (e.g., fertilizer), drought stress, etc.
(Figure S5, Supporting Information). The expression of
transcripts Ta.30807 and Ta.23297, is up-regulated under
nitrogen conditions, while transcript Ta.28063.1.S1_x_at,

Table 2. Validity and Prediction Rates of Five Independent
OPLS-DA Models Based on Normalized Gene Expression of
Organically and Conventionally Grown Winter Wheat

prediction rate (%)f

prediction
seta RYcum

2 b Qcum
2 c RMSEEd RMSEPe C O ON

1 0.54 0.51 0.26 0.28 91 89 0
2 0.55 0.52 0.26 0.28 90 100 50
3 0.52 0.50 0.27 0.22 90 100 67
4 0.52 0.50 0.27 0.23 100 89 67
5 0.56 0.53 0.26 0.30 70 100 33
X̅ 0.54 0.51 0.26 0.26 88 96 43

aEach independent prediction is made by selecting 20% of the total
sample set (N = 113). bCumulative Y-variation modeled. cEstimate of
the predictive ability of the model. dRoot mean square error of
estimation (RMSEE). eRoot mean square error of prediction
(RMSEP). fPrediction rates of unknown to three classes of treatment
(C, conventional; O, organic; ON, no nitrogen).
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which was the only up-regulated transcript in organic and no-
nitrogen samples, is shown here as down-regulated in wheat
samples grown under nitrogen conditions. Consistent with the
outcomes of the in silico analysis, the latter transcript is also up-
regulated under the low nitrogen condition observed in Ciney
and to a lesser extent in Fronville (Figure 2 and Table S1,
Supporting Information). However, this transcriptome study
highlights that there is a molecular response to different
growing conditions, which is most likely linked to the type of
treatment and type of chosen germplasm used in a given
experiment. For example, the stress responses of reproductive
tissues have more relevance to agriculture than juvenile or most
vegetative tissues.51 Therefore, relevant changes in gene
expression in specific cells may be diluted by transcripts from
surrounding cells and may not be determined.48 Nevertheless,
the spatial resolution of tissue sampling analyzed by a
microarray has an impact on all transcriptome profiles. Most
performed microarray analyses are conducted on samples
grown under laboratory conditions, which allow for a better
control of treatment conditions and the germplasm used.2

Thus, the kinetics of stress treatments is very important and has
an impact on the interpretation of results. With regards to the
field condition, a recent review highlighted the weakness of the
majority of transcription profiles due to the fact that early
response to several stress conditions is more related to
treatment conditions and does not reflect the growing
conditions in fields.49 Global transcriptome profiling of samples
grown under natural field conditions might be different from
the case of samples collected from controlled growth conditions
(e.g., hydroponic conditions). In natural growing conditions, it
is much more difficult to monitor all the parameters that may
have an impact on the whole plant transcriptome.
Despite the large amount of analyzed transcripts provided by

the Affymetrix chip, a small number was differentially expressed
in winter wheat flag leaves grown under different agricultural
conditions at the selected cutoff. Although many of these
transcripts have not been fully characterized in wheat, the
transcriptome profiling performed in several crops grown in
different conditions and experimental setups indicates that
expression of several gene/proteins responds to the nitrogen
supply. Overall, the variation of gene expression may be
explained by the cultivar itself, crop seasons, geographical sites,
plant-to-plant variation, etc. The differential gene expression
could be caused by different physiological stages of the flag
leaves in organic versus conventional fields. Nonetheless,
several target genes such as RuBisCO small and large subunits
and ferredoxin-NADP(H) oxidoreductase, which are abundant
in leaves and regulated by nitrogen,3 were stably expressed in
the samples collected from the three cultivars and different
agricultural growing conditions. This may argue for comparable
physiological stages of the flag leaves in both agricultural
production systems knowing that RuBisCO is degraded during
senescence.50 In a transcriptome analysis of potato tubers, van
Dijk et al.6 have shown that there were more pronounced
differences among plants grown under a conventional
agricultural regime than among the different types of organic
fertilizer and plant protection regimes applied. The gene
expression profile observed in the studied wheat cultivars seems
to confirm this statement (Figures 3 and S2 (Supporting
Information)). A hypothesis could be that conventional wheat
samples might have higher variability in their physiological
stage than organic samples due to the different amounts of
nitrogen fertilizer applied in both agricultural systems (Table

S1, Supporting Information). Under field growing conditions,
nitrogen is one of the major factors that influence plant
growth.16 Taken together, the transcriptome profile analysis in
wheat flag leaves collected from plants grown under different
agricultural conditions reflected a specific gene expression
signature under field conditions. The selected differentially
expressed genes are involved in amino-acid metabolism,
assimilation of ammonia, metabolism of the glutamate group,
or C-carbohydrate group (sugar metabolism) in cellular
transport (Table S7, Supporting Information).51 Previous
investigations in Arabidopsis showed that many genes involved
in carbon metabolism, such as sugar transporter genes, and
amino acid transporter genes were up-regulated when the long-
term availability of nitrogen increased.48 Additionally, the light-
induced synthesis of carbohydrates also appears to affect the
expression of genes involved in nitrogen assimilation.
Similarities of gene expression profiles and the concomitant

misclassification rate higher than 5% between organically grown
wheat and wheat grown under no-nitrogen fertilization imply
the identification of additional biomarkers and also predict the
challenges in comparing organic agriculture and integrated
agriculture or sustainable agriculture. However, overall these
results showed that the agricultural production system had a
significant effect on the global transcriptome of winter wheat.
The transcriptome profiling represents a valuable source
exploited for functional genomics in wheat and offers a new
approach in understanding the alteration of gene expression as
results of changes in environmental conditions for identification
of the origin of crop production systems.

■ ASSOCIATED CONTENT

*S Supporting Information
Geographical localization of wheat fields, PCA plots, overview
plots, microarray data, and additional data. This material is
available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author
*Phone: +32 14 571 817. Fax: +32 14 571 787. E-mail: alain.
maquet@ec.europa.eu.

Funding
This research was supported by the TRACE research project
(No. 006942) funded by the European Commission.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank Union Nationale des Agrobiologistes Belges
(Gembloux, BE) for providing certified organic as well as
conventional Cubus samples, Centre Wallon de Recherches
Agronomiques (Gembloux, BE) for providing Tommi and
Centenaire samples from certified organic fields and fields
without any application of nitrogen fertilizer, École Technique
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